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Poisson-Boltzmann Equation
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Abstract

In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the

Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate

that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm.

To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed

from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation

free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to

adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it

is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We

use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical

basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners.
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1 Introduction

The Poisson-Boltzmann equation (PBE) is a widely used model for electrostatic interactions of charged
bodies in dielectric media, such as molecules, ions, and colloids, and thus is of importance in many areas of
science and engineering, including biochemistry, biophysics, and medicine. (See the classical texts [1, 2] for a
derivation of the PBE.) The importance of the PBE model is reflected by the popularity of software packages
such as APBS [3], CHARMM [4], DelPhi [5], and UHBD [6], within the molecular modeling communities. It
provides a high fidelity mean-field description of electrostatic interactions and ionic distributions of solvated
biomolecular systems in equilibrium. The partial differential equation itself is challenging to solve numerically
due to singularities of different orders at the positions of permanent point charges and the presence of a
dielectric interface.

In this article, we develop an adaptive multilevel finite element method for the PBE using goal-oriented
a posteriori error indicators. This adaptive algorithm, which is a variant of that studied for the PBE in
[7, 8, 3], deviates substantially from previous work in that the error indicator is based on a user defined
quantity of interest or goal. This is in contrast to traditional residual-based adaptive refinement algorithms
(like those developed for the PBE in [9]) that drive-refinement to minimize the global error measured in an
energy-norm. The goal-oriented refinement methodology has been successfully employed in a wide range of
application areas, including fluids, elasticity, and fluid structure interaction [10]. Despite these successes, we
show that this methodology applied directly to the PBE does not necessarily lead to a successful adaptive
algorithm. To remedy this issue we propose a novel marking strategy which recovers the performance
commonly seen in other applications. This is the first time that this particular goal-oriented refinement
strategy has been applied to the PBE specifically, and molecular biophysics in general.

At the core of any adaptive finite element approach are the iterative methods used to solve the discretized
equation. However, due to the ill-conditioning of the linear systems arising from the discretization of the
PBE, the convergence rate of traditional iterative solvers is significantly deteriorated. To remedy this, we
combine modern Bramble-Pasciak-Xu (BPX)-type multilevel preconditioners with the goal-oriented adaptive
algorithm mentioned above. When applied to the PBE, our results demonstrate that the overall algorithm
is accurate, highly efficient and scalable with respect to the number of levels in the adaptive hierarchy.

An outline of the article is as follows. In section 2, we give a brief overview of the Poisson-Boltzmann
equation, and describe the most useful formulations for modeling and numerical simulation, such as the
regularized formulations described in [9, 11, 12]. We also discuss the solvation free energy functional cor-
responding to a given reaction potential, which will form the basis of our goal-oriented error indicators
developed later in the article. We describe adaptive finite element methods in section 3, including weak for-
mulation of the regularized PBE, discretization by finite element methods, and adaptive algorithms driven
by a posteriori error indicators. In section 4, we describe a particular class of error indicators known as goal-
oriented indicators, and describe several indicators designed for the PBE. In section 5, we discuss a local
multigrid algorithm used to precondition an iterative Krylov method for solving the linear systems arising
from adaptive mesh refinement. With some care, these methods enable an algorithm whose complexity is
close to optimal. The results from a sequence of numerical experiments using the Finite Element ToolKit
(FETK) are presented in section 6. These results highlight the efficacy of the goal-oriented error indicator
for the Poisson-Boltzmann problem, as well as the utility of the linear solver strategy combined with the
adaptive algorithm, driven by the goal-oriented error indicator. We draw some conclusions in section 7.

2 The Poisson-Boltzmann Equation

The Poisson-Boltzmann equation (PBE) is a second-order nonlinear partial differential equation whose so-
lution gives the electrostatic potential, φ(x), for a solute molecule immersed in an implicitly defined solvent.
Using a mean-field approximation, the solvent is treated as a bulk medium where ions are distributed ac-
cording to the Boltzmann distribution. Figure 1 is a schematic representation of the domain of the PBE,
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Solvent Ions
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Figure 1: Debye-Hückel model of a charged biological structure immersed in a solvent containing mobile
ions

denoted by Ω. The innermost region, Ωm, contains the explicitly represented solute molecule. The outer
region, Ωs, is the bulk solvent and contains the implicit solvent ions. Between Ωs and Ωm is the ion exclusion
layer, which separates the solute from the solvent ions, and has a width dependent on the size of the solvent
ions. For simplicity, we will assume the solvent ions are small and the ion exclusion layer can be neglected.
Hence, the interface between the solute and solvent is a surface, denoted by Γ = Ω̄m ∩ Ω̄s. The shape of the
surface is governed by the short-range repulsive van der Waals interactions, which prevent the solvent from
penetrating the solute. The precise definition of the surface varies depending on the model [13].

The PBE for a 1:1 electrolyte (e.g., sodium chloride) is

−∇ · ε(x)∇u(x) + κ̄2(x) sinh (u(x)) =
4πec

kBT

P∑
i=1

qiδ(x− xi), x ∈ Ωm ∪ Ωs,

u(∞) = 0,[[
ε(x)

∂u(x)
∂n

]]
= 0, x ∈ Γ,

(2.1)

where u(x) = ecφ(x)/kBT is the dimensionless potential, ec is the charge of an electron, kB is Boltzmann’s
constant, and T is the temperature. Here,

[[
·
]]

denotes the jump across the interface[[
f(x)

]]
= lim

ζ→0
f(x+ ζn)− f(x− ζn) (2.2)

and n is the outward pointing normal of ∂Ωm. The dielectric function ε(x) jumps one or two orders of
magnitude at the interface Γ. For example, commonly used values are ε(Ωm) = εm = 2 and ε(Ωs) = εs = 80.
The modified Debye-Hückel parameter, κ̄, has a similar discontinuity, with κ̄(Ωm) = 0 and κ̄(Ωs) = κ̄s > 0.
The fixed ions within the solute are represented by a sum of Dirac delta distributions, with fixed charge
centers, xi, and charges ecqi. This charge distribution induces singularities in the electrostatic potential and
has, until recently, proved to be difficult to treat numerically.

To address this issue the PBE is reformulated so that the singularities are explicitly removed [14, 15].
Following [9, 11, 12], this is accomplished by writing the potential as a sum of a singular term uc and a
nonsingular remainder ur. The singular term is the Coulomb potential

uc(x) =
ec

εmkBT

P∑
i=1

qi
|x− xi|

, (2.3)

4
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which satisfies the Poisson equation

−∇ · εm∇uc(x) =
4πec

kBT

P∑
i=1

qiδ(x− xi) for x ∈ Ω,

uc(∞) = 0.

(2.4)

There are numerous fast algorithms (with linear or near linear complexity) for evaluating uc on a set of
quadrature points, such as fast multipole [16], multilevel summation [17, 18] and particle mesh Ewald [19].

Substituting u = ur + uc into the PBE (Eq. 2.1) gives a modified form of the PBE, which was termed
in [9] as the Regularized PBE (RPBE):

−∇ · ε(x)∇ur(x)+κ̄2(x) sinh (ur(x) + uc(x))

= ∇ · (ε(x)− εm)∇uc(x), x ∈ Ωm ∪ Ωs,

ur(∞) = 0,[[
ε(x)

∂ur(x)
∂n

]]
= (εm − εs)

∂uc(x)
∂n

, x ∈ Γ.

(2.5)

Note that, because both κ̄(x) and (ε(x) − εm) are zero for x ∈ Ωm and the centers of the atoms in the
solute are well separated from Γ, the singular function, uc, is never evaluated near the singularities. This
formulation was used in [9] to develop continuous a priori L∞ estimates of solutions, and subsequently to
show existence and uniqueness of solutions of the PBE. Furthermore, the authors established discrete a
priori L∞ estimates for Galerkin solutions, making possible quasi-optimal a priori error estimates, as well
as a provably convergent adaptive finite element method for the RPBE.

Recently, an alternative 3-term splitting of the PBE has been proposed in [11] which addresses the inherit
subtractive cancellation in the reconstruction of the electrostatic potential used by the RPBE. In this article,
the authors establish mathematical results for the alternative splitting, including continuous and discrete
a priori L∞ estimates, existence and uniqueness of solutions, quasi-optimal a priori error estimates, and a
convergent adaptive finite element method (AFEM). (Whereas in [9] only AFEM convergence was shown, it
was shown in [11] that AFEM is a contraction for the RPBE, using a new AFEM convergence framework
for nonlinear problems developed in [20].) The 3-term splitting decomposes the electrostatic potential into

u(x) =
{
u3(x) + uc(x) + uh(x) in Ωm

u3(x) in Ωs
, (2.6)

where uc is the Coulomb potential, but here it is restricted to the subdomain Ωm. The harmonic term, uh,
is defined as the solution to

−∇2uh(x) = 0 in Ωm (2.7)

uh(x) = −uc(x) on Γ. (2.8)

Applying the definitions of uc, uh and substituting into the PBE (Eq. 2.1), one obtains an equation for u3,

−∇ · (ε(x)∇u3(x)) + κ̄2(x) sinh(u3(x)) = 0 in Ω, (2.9)[[
ε(x)

∂u3(x)
∂n

]]
= εm

∂(uc(x) + uh(x))
∂n

on Γ, (2.10)

u3(∞) = 0. (2.11)

In contrast to the RPBE, this formulation avoids the subtractive cancellation since u3 = u in Ωs, and the
Coulomb term is not used to reconstruct the potential in the solvent subdomain.

For systems which are not highly charged, the variation in the potential is relatively small, and the
hyperbolic sine term is well approximated by its linearization. This approximation, which replaces sinh(u)

5
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with u, results in what is known as the linear Poisson-Boltzmann equation (LPBE), or the linear regularized
Poisson-Boltzmann equation (LRPBE) in case of the RPBE. Although this approximation reduces the ionic
response of the solvent [13, 21], it can significantly reduce the complexity of many numerical algorithms (e.g.,
boundary element and boundary integral methods) [22, 23, 24].

One important use for the solution to the PBE is in the calculation of solvation free energies. This
quantity measures the thermodynamic work of moving the solute molecule from a vacuum to a solvent
environment. The solvation free energy can be written as a sum of nonpolar and polar contributions. The
nonpolar term depends on the solvent accessible surface area, excluded volume, and nonpolar forces which
are typically assumed to be independent of the electrostatic potential [25, 26]. The polar term, S, is a linear
functional of the solution to the RPBE, ur, (also known as the reaction potential) [25] and can be expressed
as

S(ur) =
1
2

∫
Ω

ur(x)
P∑

i=1

ec qiδ(x− xi) dx. (2.12)

For the 3-term splitting, the reaction potential is the sum of u3 and uh.

3 Adaptive Finite Element Methods

The finite element approach provides a natural framework for dealing with the complex molecular sur-
faces which arise in the PBE. Although there are modified finite difference methods which address this
difficulty [27], finite element methods provide an attractive alternative when paired with an adaptive un-
structured mesh designed to conform to the shape of the solute molecule [24]. In this section, we present a
general adaptive finite element method for the regularized PBE, including the weak formulation, discretiza-
tion, solution using an inexact global Newton iteration, and adaptive refinement procedure. For more details
on the finite element method, see [28, 29, 30, 31].

3.1 Weak Forms

To give a well-defined weak formulation, the nonlinearity involving exponentials must be controlled; in [9, 11],
a priori L∞ estimates are obtained for any solution to the RPBE, giving almost everywhere pointwise bounds
of the form: α 6 ur 6 β. This leads to working with a well-defined solution space that consists of a non-
empty, topologically closed, convex subset of H1(Ω):

Me := { v ∈ H1(Ω) : α 6 v 6 β a.e. in Ω, v = u− uc on ∂Ω }. (3.1)

It is shown in [9, 11] that there exists a unique solution to either regularized form of the RPBE in Me ⊂
H1(Ω). The weak formulation is: Find ur ∈Me such that

a(ur, v) + b(ur + uc, v) = L(v) ∀v ∈ H1
0 (Ω) (3.2)

where

a(u, v) = (ε∇u,∇v) (3.3)

b(u, v) = (κ̄2 sinh(u), v) (3.4)

L(v) = (−(ε− εm)∇uc,∇v). (3.5)

The linear functional L(·) is defined by integrating the right hand side of Eq. 2.5 by parts and applying the
jump condition to eliminate the interface terms.

The weak form for the 3-term split regularized PBE requires solving two problems: first for the harmonic
term on Ωm and second for the split potential on the whole domain Ω. Define the solution space to the

6
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harmonic problem as Mh := {v ∈ H1(Ωm) : v(x) = −uc(x) ∀x ∈ ∂Ωm}. Then the weak form of Eqns. 2.7-
2.11 is: Find (uh, u3) ∈Mh ×Me such that

a(u3, v) + b(u3, v) + am(uh, w) = 〈g(uh), v〉 ∀(w, v) ∈ H1
0 (Ωm)×H1

0 (Ω) (3.6)

where am(·, ·) is the restriction of the bilinear form to the Ωm subdomain and

〈g(uh), v〉 =
∫

∂Ωm

εm
∂(uc + uh)

∂n
vdx. (3.7)

3.2 Solving

Due to the hyperbolic sine, the RPBE has a strong nonlinearity. The discretized nonlinear problems defined
in Eqns. 3.2 and 3.6 can be solved using an inexact-Newton method [32]. For brevity, we give details for
Eq. 3.2. Define the weak residual functional to be

〈R(uh
r ), v〉 = L(v)−

(
a(uh

r , v) + b(uh
r + uh

c , v)
)
. (3.8)

Here uh
r is the discrete solution satisfying the system of nonlinear equations

〈R(uh
r ), v〉 = 0 ∀v ∈ V h (3.9)

where V h is the space of piecewise linear functions defined by the tetrahedral mesh. Linearizing Eq. 3.9
around uh

r results in

Jwh := 〈DR(uh
r )wh, v〉

=
d

dε

(
〈R(uh

r + εwh), v〉
∣∣
ε=0

= −a(wh, v)− b′(uh
r + uc;wh, v) ∀v ∈ V h. (3.10)

In the linear RPBE, sinh(u) is replaced by u, and b′(u, v) = (κ̄2u, v). Newton’s method defines the nonlinear
update vector sh as the solution to

Jsh = −R(uh
r ). (3.11)

Given an initial guess uh
r ≈ u0, the updated solution is defined as u1 = u0 +sh. This process can be repeated

until a desired level of convergence is achieved. An inexact-Newton method uses an iterative solve to find
an approximate solution to Eq. 3.11, with a relatively large tolerance for the linear solve when far from the
nonlinear solution. However, as the exact solution to Eq. 3.9 is approached, the linear solver tolerance is
tightened so that quadratic convergence is achieved.

The computational complexity of the Newton solver is dominated by the method used to solve the N
linear algebraic equations [33, 34] within each iteration. Multilevel methods provide an advantage in that
they are provably optimal or nearly optimal methods for solving these systems [35, 34, 36]. The presence of
geometrically complex discontinuities in the dielectric ε and in the Debye-Hückel parameter κ̄ in the PBE
destroy classical multilevel method efficiency, and can even cause divergence. This is analyzed at length for
the PBE in [37, 38, 39], and various techniques based on coefficient averaging and algebraic enforcement of
variational (Galerkin) conditions are examined. Algebraic multilevel methods have been used successfully
for many similar problems; cf. [40, 41, 42, 43, 44, 45, 46, 47, 48]. A fully unstructured algebraic multilevel
approach is taken in FETK, more details are provided in Section 5.

Starting from an initial mesh T0, the adaptive mesh refinement procedure builds a sequence of conforming
meshes T0, T1, . . . , Tl [9, 11, 49]. This procedure is divided into four steps: SOLVE, ESTIMATE, MARK, and
REFINE. In the SOLVE step, a solution is computed on the current mesh. Using this result, the ESTIMATE
step computes elementwise error indicators and an estimate of the global error. In a production environment,
the procedure terminates if the global error estimate is below some prescribed tolerance. Otherwise, the
MARK step selects elements for refinement. This step is crucial to the convergence of the method. Finally,
REFINE subdivides the marked elements possibly subdividing additional unmarked elements in order to
produce a conforming mesh. The refinement technique used in this article is longest edge bisection [50].
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4 Error Indicators

In this section we present a posteriori error indicators for use in adaptive refinement. These estimators are
typically developed by considering the residual of the weak form. For example, given a finite element solution
uh

r ∈ V h, the weak residual for the linear RPBE is (compare to Eq. 3.8)

〈R(uh
r ), v〉 = L(v)− (κ̄2uc, v)−

(
a(uh

r , v) + (κ̄2uh
r , v)

)
(4.1)

for a given v ∈ V . For the remainder of this article, we restrict our attention to two classes of error indicators:
energy-based and goal-oriented. The first class estimates the error in the energy norm, although this idea
can be generalized to other norms, (e.g., the H1 norm). The second class, called goal-oriented, focuses on
estimating the error in a user specified quantity of interest or goal functional. In the following sections, we
derive error indicators from both classes for the linear RPBE. For the goal-oriented indicator, the solvation
free energy is used as the target functional.

4.1 Energy Norm Indicators

A standard a posteriori error indicator is based on bounding the error in the energy norm. It is easily
derived by breaking the weak residual into its elementwise components and integrating by parts over each
element [51]. This technique was used in [52] to derive the following estimator for the linear RPBE

η2
K(uh) = h2

K‖rK‖2
L2(K) +

1
4
h∂K‖r∂K‖2

L2(∂K), (4.2)

where

rK(x) =(∇ · (ε(x)− εm)∇uc(x)− κ̄2(x)uc(x))

− (−∇ · ε(x)∇uh
r (x) + κ̄2(x)uh

r (x)) ∀K ∈ T
(4.3)

and

r∂K(x) = nK ·
[[

(ε(x)− εm)∇uc(x) + ε(x)∇uh
r (x)

]]
nK

∀K ∈ T . (4.4)

This indicator gives a bound on the error measured in the energy norm (|||v|||2 := a(v, v) + (κ̄2v, v))∣∣∣∣∣∣ur − uh
r

∣∣∣∣∣∣2 ≤ ∑
K∈T

η2
K(uh

r ). (4.5)

Bounding the error in other norms is possible. For example, in [9, 11] a similar a posteriori error indicator
for the RPBE was shown to bound the error measured in the H1 norm. Other efforts have focused on
formulating the RPBE as a first-order system least squares (FOSLS) problem, which has a natural error
estimate [53, 54].

4.2 Goal-Oriented Indicators

Key to the development of goal-oriented error indicators is relating the weak residual to the error in the goal
functional. For symmetric linear problems, a direct application of the Riesz representation theorem shows
that there exists a dual function that when paired with the weak residual gives the error in the goal [55].
The challenge is to approximate this function and utilize that approximation to develop error indicators.
However, for nonlinear problems, like Eq. 2.5, the definition of the dual function is not so clear. The first
part of this section discusses a strategy for defining the dual function for both the nonlinear RPBE and the
three term splitting. Using this definition of the dual, two goal-oriented error indicators are proposed for
the linear RPBE utilizing the solvation free energy as the quantity of interest.
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Following [55], a dual function for the nonlinear RPBE can be defined by considering the constrained
minimization problem

ur = arg min
u∗r∈Me

S(u∗r) subject to a(ur, v) + b(ur + uc, v) = L(v) ∀v ∈ H1
0 (Ω), (4.6)

where a(·, ·), b(·, ·) and L(·) are specified in Eq. 3.5, and S is the goal functional. Note that because
the RPBE constraint determines the solution uniquely, the minimization problem has the same solution.
However, specifying the minimization provides an additional mathematical framework to define the dual
function. To see this, consider the Lagrangian associated with the minimization problem

Θ(ur, w) = S(ur) +
(
L(w)− (a(ur, w) + b(ur + uc, w))

)
, (4.7)

where the Lagrange multiplier, w ∈ H1
0 (Ω), is also the dual function. Taking the first variation of Θ with

respect to u gives the dual problem:

Find w ∈ H1
0 (Ω), such that 〈DR(ur)v, w〉 = −S(v), ∀v ∈ H1

0 (Ω), (4.8)

where 〈DR(·)·, ·〉 was defined in Eq. 3.10. As discussed above, if b(·, ·) is linear in the first argument then
Eq. 4.8 simplifies to a(v, w) + (κ̄2v, w) = S(v) ∀v ∈ H1

0 (Ω). For the linear problem the error in a goal
functional S(·), like the solvation free energy, is simply expressed in terms of the weak residual

S(ur − uh
r ) = a(ur − uh

r , w) + (κ̄2(ur − uh
r ), w)

= L(w)− a(uh
r , w)− (κ̄2(uh

r + uc), w). (4.9)

Thus, if w is known, the error in S(·) is easily calculated. In the nonlinear case the error in the goal satisfies

S(ur − uh
r ) = L(w)− a(uh

r , w)− b′(uh
r + uc;uh

r , w) + E, (4.10)

where E is quadratic in the error in uh
r [55].

For the three term splitting of the PBE, again we setup a constrained minimization problem to define
the dual. Using the notation from the weak form in Eq. 3.6, the corresponding Lagrangian is

Θ3-term(u3, uh;w3, wh) = S(u3) + Sm(uh)+

〈g(uh), w3〉 − (a(u3, w3) + b(u3, w3) + am(uh, wh)) (4.11)

where w3 ∈ H1
0 (Ω) and wh ∈ H1

0 (Ωm) are dual functions. The functional Sm(·) is a restriction of the original
goal functional to the Ωm domain. Taking the first variation of Θ3-term with respect to u3 and uh gives the
dual problem

a(v, w3) + b′(u3; v, w3) = S(v) ∀v ∈ H1
0 (Ω),

am(v, wh) = Sm(v) + 〈g′(uh; v), w3〉 ∀v ∈ H1
0 (Ωm)

(4.12)

where
〈g′(uh; v), w3〉 =

∫
∂Ωm

εm
∂v

∂n
w3dx. (4.13)

4.2.1 Goal-Oriented Error Indicators for the Linear RPBE

To make the application of the dual functions in error indicators more concrete, we present two goal-oriented
indicators for the linearized RPBE. As an example we will focus on accurate computation of the solvation free
energy (see Eq. 2.12). Unfortunately, S(·) is not bounded onH1

0 (Ω) due to the inclusion of delta distributions.
A common approach to circumventing this issue is to use a mollified version of the functional [51, 10]. In
this case, the mollified solvation free energy is

S(ur) ≈ Sσ(ur) =
1
2

∫
ur(x)

P∑
i=1

ec qiθ(|x− xi|, σ) dx, (4.14)
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where θ is a locally supported function defined such that

lim
σ→0

∫
θ(|x|, σ)f(x) dx =

∫
δ(x)f(x) dx = f(0). (4.15)

One possible choice for θ is the step function

θ(r, σ) =
{
B−1

σ r ≤ σ,

0 r > σ,
(4.16)

where Bσ is the volume of a ball of radius σ.
A simple error indicator suggested by Eq. 4.9 is to first solve the dual problem using the same approxi-

mation space as the primal. This approximate dual could then be substituted for w in Eq. 4.9 to compute
the value of the indicator. However, if the same finite dimensional space is used for solving both the dual
problem and the primal problem, then, because of Galerkin orthogonality, Eq. 4.9 will be zero (see [10]). A
remedy is to instead solve the dual problem using a finer approximation space, Uh ⊂ H1

0 (Ω). One convenient
choice is to maintain the same mesh and use higher order polynomials for Uh. In the examples below, V h is
the space of piecewise linear polynomials and Uh is the space of piecewise quadratics. Let the finer resolution
solution of the dual problem be denoted wh,2. Substituting w ≈ wh,2 into Eq. 4.9 yields

Sσ(ur − uh
r ) ≈ L(wh,2 − Ph

h,2w
h,2)

−
(
a(uh

r , w
h,2 − Ph

h,2w
h,2) + (κ̄2(uh

r + uc), wh,2 − Ph
h,2w

h,2)
)

(4.17)

Where Ph
h,2 is a convenient projection (e.g., nodal injection) of the fine space Uh onto V h. The choice of

the projection operator will affect the quality of the indicator. Decomposing the error into its elementwise
contributions gives

Sσ(ur − uh
r ) ≈

∑
K

LK(wh,2 − Ph
h,2w

h,2)− aK(uh, wh,2 − Ph
h,2w

h,2)

− (κ̄2(uh
r + uc), wh,2 − Ph

h,2w
h,2)K ≤

∑
K

ηK(uh, wh,2), (4.18)

where the subscript K indicates the restrictions of the linear functional, bilinear functional or inner product
to element K and

ηK(uh, wh,2) =
∫

K

∣∣∣∣−(ε(x)− εm)∇uc(x) · ∇(wh,2(x)− wh(x))

− κ̄2(x)uc(x)(wh,2(x)− wh(x))

− ε(x)∇uh
r (x) · ∇(wh,2(x)− wh(x))

− κ̄2(x)uh
r (x)(wh,2(x)− wh(x))

∣∣∣∣ dx.
(4.19)

Here, the absolute value of the integrand in Eq. 4.18 has been taken over each element. In the numerical
experiments in section 6, Eq. 4.19 is referred to as the the “goal-quadratic” error estimator used by the
various adaptive refinement marking strategies.

The error indicator in Eq. 4.19 requires solving a dual problem which is substantially larger than the
primal problem. To alleviate this issue, we develop a second goal-oriented error estimator that finds an
approximation to the dual in V h (which is the same space as the primal problem). The error in the goal
is estimated by solving many local elementwise boundary value problems. The technique proposed here is
similar to the development of the equilibrated residual method for computing goal-oriented estimators [56, 57].
However, the less accurate but simpler element residual method (ERM), as discussed in [51], is used. Using
the parallelogram law, the error in the linear functional can be rewritten [51, 56, 57] as

Sσ(ur − uh
r ) = a(ur − uh

r , w − wh) + (κ̄2(ur − uh
r ), w − wh)

=
1
4

∣∣∣∣∣∣(ur − uh
r ) + (w − wh)

∣∣∣∣∣∣2 − 1
4

∣∣∣∣∣∣(ur − uh
r )− (w − wh)

∣∣∣∣∣∣2 (4.20)

10
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where again |||v|||2 = a(v, v) + (κ̄2v, v) is the square of the energy norm. Define elementwise error functions
φK = ur − uh

r |K and ψK = w − wh|K to be computed by the element residual method. The error in the
primal problem on element K is approximated by the solution to

aK(φK , v) + (κ̄2φK , v)K = 〈R(uh
r ), v〉K +

∫
∂K

fu
Kv(x) ds ∀v ∈ H1(K), (4.21)

where
〈R(uh

r ), v〉K = LK(v)− aK(uh
r , v)− (κ̄2(uh

r + uc), v)K , (4.22)

and
fu

K =
(
ε(x)∇uh

r (x) + (ε(x)− εm)∇uc(x)
)
· nK . (4.23)

Similarly, the error in the dual problem on element K is approximated by the solution to

aK(v, ψK) + (κ̄2v, ψK)K = Sσ
K(v)− aK(v, wh)− (κ̄2v, wh)K

+
∫

∂K

fw
Kv(x) ds ∀v ∈ H1(K),

(4.24)

where
fw

K = ε(x)∇wh(x) · nK . (4.25)

For a derivation of these equations see [52]. Explicitly stated, the “goal-linear” error estimator used in the
numerical experiments in section 6 is given by

ηK(uh
r , w

h) =
1
4
|||φK + ψK |||2K − 1

4
|||φK − ψK |||2K . (4.26)

5 Multilevel Preconditioning

As the mesh is refined, the conditioning of the linear system deteriorates, and preconditioning is necessary
to accelerate the convergence of iterative solvers (e.g., the conjugate gradient method). The challenge in
designing an efficient preconditioner is balancing the cost of applying the preconditioner with its effectiveness
in improving the conditioning of the underlying system.

In a given finite element mesh, at level j, we denote the set of nodes and its cardinality by Nj and Nj ,
respectively. We call the set of nodes introduced precisely at level j the fine nodes, and denote them N f

j .
As the mesh is refined, N f

j is appended to Nj−1, leading to the following hierarchy of nodes:

Nj = Nj−1

⋃
N f

j , j = 1, . . . , J,

where NJ = N .
In the local mesh refinement setting, the way the coarse and fine nodes are processed plays a central role in

determining the overall efficiency of a preconditioner. If the computational cost per level can be maintained
proportional to Nj−Nj−1, or slightly larger, then total cost will be order N , and the resulting preconditioner
is said to have optimal computational complexity per iteration. If the resulting preconditioned system has
a bounded condition number (independent of problem size), a solution can be obtained using an iterative
method with a bounded number of iterations. Hence, the combination of optimal per iteration complexity
with a bounded condition number leads to a solver with optimal overall complexity.

In this article, we restrict the presentation of local multilevel preconditioning to a purely geometric (node
based) perspective because the computational complexity is exactly governed by the number of nodes pro-
cessed by the preconditioner at each level. The local multilevel preconditioners of interest can be classified
into two groups: multiplicative local multigrid (MG) [58, 59, 60, 61] and additive local MG [60, 62]. The
additive local MG preconditioner is often called the Bramble-Pasciak-Xu (BPX) preconditioner in the liter-
ature. In this article, we report on only the multiplicative variants. We use the term “classical” to refer to
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the application of a preconditioner in the uniform refinement setting. There is abundant literature on MG
preconditioners [63, 64, 36, 65] and local MG (e.g., see [66, 67] for a review).

Proofs demonstrating the optimality of classical MG and classical additive MG preconditioners rely on a
geometric increase in the number of nodes per level. This is because the cost per iteration of these classical
preconditioners is proportional to Nj (not Nj −Nj−1 ) per level, which results in suboptimal complexity if∑J

j=1 cj Nj is not O(N). This occurs frequently in the local refinement setting due to the slow increase in
the number of nodes between levels.

The hierarchical basis (HB) preconditioners, developed by Bank, Dupont, and Yserentant [68, 69, 70],
maintain a per-level cost proportional to Nj −Nj−1, by only processing (smoothing) the fine nodes at each
level. Although the cost per iteration is optimal, HB preconditioners do not achieve a uniformly bounded
condition number, and suffer from O(J2) and O(2J) iterations in two- and three-dimensions, respectively.
To address this deficiency, we investigate local MG preconditioners which process a larger set of nodes, Xj ,
but still maintain a cost which is proportional to Nj −Nj−1 at each level. Hence, we seek a set Xj such that

N f
j ⊂ Xj ⊂ Nj ,

with cardinality, Xj , which is proportional to Nj −Nj−1. At the same time, Xj , should be large enough that
the resulting system has a bounded condition number, leading to a solver with optimal overall complexity.
Aksoylu and Holst [71] showed that this is possible even for three-dimensional local refinement routines.

In the local mesh refinement setting, Aksoylu, Bond, and Holst [72] studied the implementation and
algebraic aspects (e.g., matrix representations) of multilevel preconditioners. Subsequent articles provide a
comprehensive overview of local MG preconditioners with various emphases: for a theoretical treatment, see
[73, 74, 75]; for optimality analysis in three-dimensional local refinement routines, see [71]; for surface mesh
applications in computer graphics, see [76].

5.1 Local multigrid preconditioners

As mentioned in the previous section, the fundamental difference between classical and local MG precondi-
tioners is the smoothing operation. In classical MG, the smoother acts on all degrees of freedom on every
level. In contrast, local MG only smooths a small subset, typically a neighborhood, of the fine degrees of
freedom. Pseudo-code for a local MG V-cycle is provided in Algorithm 1.

Algorithm 1 Local multigrid V-Cycle:
u[j] = Vcycle(u[j], f[j], j)
0) If j = 1, solve A[j]u[j] = f[j] coarsest level solve

and return u[j];
1) u[j] = Smooth(u[j], A[j], f[j],Xj , s1); smooth s1 times on Xj

2) r[j−1] = I
[j−1]
[j]

(
f[j] −A[j]u[j]

)
; restrict residual

3) e[j−1] = 0; set e[j−1] to zero
4) e[j−1] = Vcycle(e[j−1], r[j−1], j − 1); coarse-grid recursion
5) u[j] = u[j] + I

[j]
[j−1]e[j−1]; add interpolated correction

6) u[j] = Smooth(u[j], A[j], f[j],Xj , s2); smooth s2 times on Xj

7) return u[j]

The set of nodes used by the underlying method’s smoothing operation defines the type of preconditioner.
In this article, we introduce three different sets of nodes to be used in the local MG preconditioner. On
a given refinement level, the marked region is the set of elements which have been marked for refinement.
The refinement region is union of the newly introduced elements as a result of the refinement and closure
procedure. Figure 2 depicts a two-dimensional refinement region formed by a local refinement routine which
consists of quadrasection closed by bisection (the so-called red-green refinement). The sets of nodes used to
define the preconditioners are as follows:

12
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HB: ◦.
BPX: ◦, �.

BEK: ◦, �, +.

ONERING: ◦, �, +, 4.

Figure 2: An example of red-green refinement (quadrasection-bisection) in two dimensions. On the left, the
mesh before refinement, with the marked region shaded in gray. On the right, the mesh after refinement
(red edges) and closure (green edges), with the refinement region shaded in gray. The labels indicate which
nodes are assigned to each of the preconditioner smoothing sets, Xj .

• Xj-HB: The set of fine nodes on level j, i.e., N f
j [68, 69, 70].

• Xj-BPX: The set of nodes whose corresponding basis functions have support entirely contained in the
refinement region [60].

• Xj-BEK: The set of nodes whose corresponding basis functions have non-empty intersection with
the marked region. This set is named after the Bornemann-Erdmann-Kornhuber type refinement [77]
routine. It consists of fine nodes and their immediate neighboring coarse nodes in the marked region.
For P1 elements, this set can be inferred from the nonzero pattern of the prolongation operator.

• Xj-ONERING: The set of nodes whose corresponding basis functions have non-empty intersection with
the refinement region [72, 78, 79, 80]. This set consists of fine nodes and their immediate neighboring
coarse nodes in the refinement region. For P1 elements, this set can be inferred from the nonzero
pattern of the coarse-fine subblock of the stiffness matrix.

As an example, we have labeled the nodes in Figure 2 to show which nodes are in each of the sets
described above. The set corresponding to the classical multigrid preconditioner contains all of the nodes on
each level.

We should note that the practical implementation of the various local MG preconditioners varies signif-
icantly depending on the particular preconditioner. Special care must be taken in order to achieve optimal
computational as well as storage complexities. The implementation aspects of how to construct optimal
complexity preconditioners are studied in more detail in [72].

6 Numerical Experiments

6.1 Adaptive Refinement

In this section, the effectiveness of goal-oriented mesh refinement is compared to refinement using the energy-
based error indicator. Of interest is computing the solvation free energy of the 921-atom Fasciculin-1 pro-
tein [81], using the solution of the linear RPBE. All tests were performed using FETK [82].
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Figure 3: Convergence of the solvation free energy for Fasciculin-1 with both goal-oriented and energy-based
indicators using the global marking strategy.

In order to solve the RPBE, a definition of the molecular surface and a mesh conforming to that surface is
needed. Various definitions of the molecular surface have been proposed in the literature, and the particular
value obtained for the solvation free energy will depend strongly on the surface geometry [13]. However,
the performance of the algorithms proposed here are insensitive to the choice of molecular surface, as long
as it is sufficiently smooth, and the underlying mesh is conforming. Historically, generation of the mesh
conforming to the surface was a great impediment to using finite elements for solving the PBE, and only
recently, with the development of tools like PDB2PQR and GAMer, has molecular meshing become a routine
task. The first step is to prepare the structure using PDB2PQR [83], which adds missing hydrogens, assigns
charges, and specifies a radius for each atom in the protein. Next, the resulting PQR file is passed to
GAMer [11, 84, 85, 86], which produces a tetrahedral mesh conforming to the shape of the protein. Finally,
this mesh is used by FETK to solve the linear RPBE, and compute the solvation free energy.

6.1.1 Global Marking Strategy

Adaptive refinement creates a sequence of grids T0, T1, . . . Tl . . . based on an error indicator. Critical to this
algorithm is the third step MARK. The goal of this step is to select elements for refinement. There are
several different choices for marking strategies [51, 10]. The strategy used here is to mark all elements in the
lth refinement level that satisfy

ηK > γ max
T∈Tl

ηT ∀K ∈ Tl, (6.1)

where γ ∈ (0, 1). This criteria yields no refinement for γ = 1 and uniform refinement for γ = 0.
The convergence of the solvation free energy for Fasciculin-1 using the global marking strategy with

both energy-based (Eq. (4.2)) and goal-oriented indicators (Eq. (4.19)) can be seen in Fig. 3. The figure
shows the relative error in the solvation free energy as a function of the number of unknowns in the primal
problem. The error in the solvation free energy is estimated by computing a high resolution solution to
the PBE using uniform mesh refinement. The vertical line near 1.5 × 106 unknowns marks the size of this
reference solution. Notice that this figure differs from traditional finite element convergence plots which
show error as a function of element radius. Since the resolution of an adaptively refined mesh can greatly
vary over the spatial domain, the element radius is not an appropriate measure of the resolution of the mesh.
Furthermore, the order of accuracy of the approximation is based on the type of basis functions used, and
thus is the same for both uniform and adaptive refinement. The benefit of adaptive refinement is that the
mesh can be refined in regions that heavily contribute to the error, resulting in higher accuracy with fewer
total degrees of freedom.
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Energy-Based Goal-Oriented

Figure 4: A cut-away of the 3D mesh surrounding Fasciculin-1. The colors indicate the distribution of marked
elements using the global marking strategy with either the energy-based indicator (left) or the goal-oriented
indicator (right). Red and blue are marked elements in the solvent and solute subdomains, respectively.

In Fig. 3, the lower line shows the convergence of the solvation free energy for several levels of adaptive
refinement using the energy-based indicator with the global marking strategy. This scheme makes steady
progress to the correct solvation free energy. On the other hand, the upper line shows the results using
goal-oriented indicators with the global marking strategy. This scheme performs very poorly.

The reason for the poor performance can be explained by looking at Fig. 4. The images are cut-aways
of the 3D mesh, colored to indicate the distribution of marked elements. The left image shows elements
selected by the global marking strategy using the energy-based indicator. While the image on the right
uses the goal-oriented indicator. The white elements are unmarked elements in the solvent subdomain
and the gray elements are unmarked elements in the solute subdomain. Elements colored red are marked
solvent elements, while blue elements are marked solute elements. Notice for the energy-based indicator
only elements in the solvent subdomain are marked. This indicates that the reaction potential in the solute
domain is relatively well approximated compared to the solution in the solvent subdomain. The distribution
of the elements marked using a goal-oriented indicator is focused on a few locations in the inner subdomain
around the solute atoms. This explains the poor convergence for the goal-oriented indicator in Fig. 3. Since
the strategy does not indicate there is error in the solvent domain, no refinement takes place.

To gain further insight into why the global goal-oriented strategy only marks elements in the solute do-
main, we refer the reader to Fig. 5. This image shows a cut-away with elements colored by their approximate
signed contribution to the error in the goal. This is constructed using a quadratic approximation of the dual
and the signed elementwise contributions from Eq. (4.17). Note that because these are error contributions
and not indicators, they take both positive and negative values. The element contributions range in value
between −0.6928 and 1.2779. In the figure, positive element contributions greater than 0.005 are colored
green and negative contributions less than −0.005 are colored orange. From the image it is clear that the
contributions in the solute subdomain have relatively large magnitude, and they oscillate in sign. The result
of this oscillation is that the majority of these contributions cancel when integrated over the entire solute
domain. However, the error estimator in Eq. (4.18) uses the absolute value, which results in an overestima-
tion of the error attributed to the solute domain. As a result, the solute domain is over refined, unless steps
are taken to modify the marking (or error estimation) strategy.
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Figure 5: A cut-away of the 3D mesh surrounding Fasciculin-1. The colors indicate the positive (green)
and negative (orange) estimated elementwise contributions to the error in the solvation free energy (see
eq. (4.17)).

6.1.2 Split Marking Strategy

To improve on the convergence of goal-oriented refinement, a second marking strategy is employed. This is a
domain dependent marking strategy that attempts to spread the refinement over solvent and solute regions
of the domain. The strategy relies on splitting the mesh into two subsets T s

l ⊂ Tl and T m
l ⊂ Tl, where T s

l

and T m
l contain the elements in the solvent and solute domains respectively. Stated concisely, the marking

strategy is

Mark all
K ∈ T s

l

K ∈ T m
l

such that
ηK > γ max

T∈T s
l

ηT

ηK > γ max
T∈T m

l

ηT
(6.2)

where γ ∈ (0, 1).
The split-marking strategy marks a significantly different group of elements, especially for the goal-

oriented indicators. The color coding of Fig. 6 is the same as in Fig. 4. Again the energy-based refinement
selects elements primarily in the solvent subdomain. However, because split-marking forces refinement in
both subdomains, a few elements along the interface in the solute domain are also selected. In contrast,
split-marking using a goal-oriented indicator marks a few elements in the solvent subdomain, while also
marking elements surrounding the solute atoms.

Figure 7 shows the relative error of the solvation free energy in Fasciculin-1 as a function of problem size
for several indicators using the split-marking strategy. In the figure, there are two plots. The plot on the left
shows the relative error in the solvation free energy as a function of the number of unknowns in the primal
problem. The second plot, with the exception of the energy-based refinement strategy, shows the relative
error as a function of the size of the dual problem. For energy-based refinement, since no dual is needed, the
horizontal axis is the size of the primal problem.

In the figure, the split marking strategy using the energy-based indicator converges steadily. This is
similar to the convergence of energy-based refinement using global marking. On the other hand, there
is a dramatic improvement in the convergence of both the linear and quadratic goal-oriented refinement
techniques, with the rate even increasing slightly as the size of the problem increases. Compare this with the
poor results for goal-oriented refinement with the global marking strategy from Fig. 3. The improvement
comes from the split marking strategy explicitly taking into account the error in the solvent and trying to
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Energy-Based Goal-Oriented

Figure 6: A cut-away of the 3D mesh surrounding Fasciculin-1. The colors indicate the distribution of marked
elements using the split marking strategy with either the energy-based indicator (left) or the goal-oriented
indicator (right). Red and blue are marked elements in the solvent and solute subdomains, respectively.
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Figure 7: Convergence of the solvation free energy for Fasciculin-1 with both goal-oriented and energy-based
indicators using the split marking strategy. The convergence measured against the size of the primal/dual
problem is on the left/right.
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Figure 8: Number of primal unknowns as a function of the number of levels of refinement. The reference
line grows proportional to 2r.

control where it is large.
The second plot in Fig. 7 shows that solving the dual problem using piecewise quadratic elements has

substantial additional cost. Although, it is likely that this cost would be mitigated by the additional work
needed when solving the nonlinear RPBE (see Eq. 2.5). In contrast, the goal-oriented strategy using an
indicator constructed from a linear dual problem (and split marking) does not suffer from the same problem,
and is the most efficient method when the total cost is taken into account.

6.2 Performance of Preconditioners

As was discussed in section 5, classical multigrid (MG) preconditioners perform best in the uniform refinement
setting, where there is a rapid geometric growth in the number of unknowns as the mesh is refined. In the
local refinement setting, this growth is much slower, and is frequently subgeometric when the refinement
is concentrated in the neighborhood of a low dimensional feature (e.g., a point or a line). As a result, the
per-iteration complexity of classical MG may fail to scale linearly (or suffer from a large scaling constant)
as the number of unknowns increases. In contrast, many local MG preconditioners do not have the same
restriction, and maintain optimal per-iteration complexity in both the local and uniform refinement settings.

In Figure 8, the number of primal unknowns is shown as a function of the refinement level for three
different refinement strategies. For the energy-based marking/refinement strategy, the growth in the number
of unknowns is geometric, but subuniform. For goal-oriented refinement the growth is even slower, but still
geometric. The dashed reference line shows a geometric growth rate proportional to 2r.

As a measure of the relative locality of each preconditioner, we compute the ratio of the number of
unknowns processed by the smoother, shown in Figure 9. Classical MG is a global method, so the ratio of
smoothed to total unknowns is 1 in both the energy based and goal oriented refinement cases. As expected,
the BEK preconditioner consistently smooths more unknowns than HB, but fewer than MG. This is because
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Figure 9: Ratio of the number smoothed unknowns, Xj , to total unknowns, Nj , on each level for different
multilevel preconditioners

the set processed by the BEK is a superset of the set processed by HB.
By design, the local multilevel preconditioners considered here maintain an optimal per-iteration com-

plexity in both the local and global refinement settings. The primary challenge for these preconditioners
is achieving a bounded condition number, independent of problem size. It can be shown that for a given
tolerance, the number of conjugate gradient (CG) iterations can be bounded by a function of the condition
number. Hence, if the condition number is bounded, so is the number of CG iterations. In Figure 10, we
report the number of CG iterations as a function of refinement level for MG, BEK, and HB. As predicted by
theory, application of the HB preconditioner leads to a slow growth in the number of CG iterations as the
mesh is refined regardless of indicator type. In contrast, for both goal-oriented and energy-based refinement
the iteration count is bounded for both the classical MG and BEK preconditioners. The iteration counts
for BEK are modestly higher than classical MG, but the work per level is reduced, since BEK smooths only
a fraction of the unknowns smoothed by classical MG. For this reason, BEK is a compelling alternative to
classical MG and HB.

7 Conclusion

In this article, we developed goal-oriented error indicators for accurate computation of the solvation free
energy from solutions of the regularized Poisson-Boltzmann equation. We found that due to oscillations and
imbalanced cancellation in the error contributions, global marking strategies based on goal-oriented error
indicators were not viable for driving adaptive mesh refinement. To address this problem, we developed
a split marking strategy based on considering each subdomain individually. In numerical experiments,
we calculated the solvation free energy for a 921-atom Fasciculin-1 protein. Through these experiments,
we showed that the new marking strategy, combined with goal-oriented refinement, is more efficient than
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Figure 10: Conjugate gradient method iteration counts for the preconditioners used.

energy-based refinement in the context of solvation free energy calculations.
The use of adaptive mesh refinement puts a greater burden on the preconditioner to maintain optimal

runtime efficiency. To address this issue, we investigated the use of local multigrid methods, which have a
lower per-iteration complexity compared to classical global multigrid. In particular, the BEK variant proved
to be a compelling alternative to classical multigrid since it has optimal per-iteration complexity, while still
maintaining a bounded iteration count as the mesh is refined. The result is an iterative solver with an
optimal overall complexity, scaling linearly with problem size.
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[46] Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.), Multigrid Methods,
vol. 3 of Frontiers in Applied Mathematics, pp. 73–130. SIAM, Philadelphia, PA (1987)

[47] Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes. Tech. Rep. UCD/CCM
34, Center for Computational Mathematics, University of Colorado at Denver (1994)

[48] Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth
order elliptic problems. Tech. Rep. UCD/CCM 36, Center for Computational Mathematics, University
of Colorado at Denver (1995)

[49] Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3),
1106–1124 (1996)

[50] Rivara, M.C.: Design and data structure of fully adaptive, multigrid, finite-element software. ACM
Transactions on Mathematical Software 10(3), 242–264 (1984)

[51] Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley &
Sons, Inc., New York (2000)

[52] Cyr, E.C.: Numerical Methods for Computing the Free-Energy of Coarse-Grained Molecular Systems.
Ph.D. thesis, University of Illinois at Urbana-Champaign (2008)

[53] Bond, S.D., Chaudhry, J.H., Cyr, E.C., Olson, L.N.: A first-order systems least-squares finite element
method for the Poisson-Boltzmann equation. J. Comput. Chem. 31(8), 1625–1635 (2010)

[54] Chaudhry, J.H., Bond, S.D., Olson, L.N.: A weighted adaptive least-squares finite element method for
the Poisson-Boltzmann equation (2011). Submitted

[55] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element
methods. Acta Numerica 10, 1–102 (2001)

23



T
h
is

is
th

e
p
re

-p
e
e
r

re
v
ie

w
e
d

v
e
rs

io
n

o
f
th

e
fo

ll
o
w

in
g

a
rt

ic
le

:
B

.
A

k
so

y
lu

,
S
.D

.
B

o
n
d
,
E
.C

.
C

y
r

a
n
d

M
.J

.
H

o
ls

t,
J
.
S
c
i.

C
o
m

p
u
t.
,
in

p
re

ss
(2

0
1
1
),

w
h
ic

h
w

il
l
b
e

p
u
b
li
sh

e
d

in
fi
n
a
l
fo

rm
a
t

h
tt

p
:/

/
d
x
.d

o
i.
o
rg

/
1
0
.1

0
0
7
/
s1

0
9
1
5
-0

1
1
-9

5
3
9
-6

[56] Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element
method. Comput. Math. Appl. 41, 735–756 (2001)

[57] Prudhomme, S., Oden, J.T.: On goal-oriented error estimation for elliptic problems: application to the
control of pointwise errors. Comput. Meth. Appl. Mechanics Engrg. 176(1-4), 313–331 (1999)

[58] Bastian, P.: Locally refined solution of unsymmetric and nonlinear problems. In: Proc. of the 8th

GAMM Seminar, vol. 46 of Notes on Numerical Fluid Mechanics, pp. 12–21. Vieweg (1993)

[59] Bastian, P., Wittum, G.: On robust and adaptive multigrid methods. In: Wesseling, P., Hemker, P.
(eds.), Proc. of the 4th European Multigrid Conference. Birkhäuser (1994)
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1, an anti-acetylcholinesterase toxin from green mamba snake venom. J. Biol. Chem. 267(31), 22122–
22130 (1992)

[82] Holst, M.: Adaptive numerical treatment of elliptic systems on manifolds. Advances in Computational
Mathematics 15(1–4), 139–191 (2001)

[83] Dolinsky, T.J., Nielsen, J.E., McCammon, J.A., Baker, N.A.: PDB2PQR: an automated pipeline for
the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004)

[84] Hayashi, T., Martone, M.E., Yu, Z., Thor, A., Doi, M., Holst, M., Ellisman, M.H., Hoshijima, M.:
Three-dimensional reconstruction reveals new details of membrane systems for calcium signaling in the
heart. J. Cell. Sci. 122(7), 1005–1013 (April 2009)

[85] Yu, Z., Holst, M., Cheng, Y., McCammon, J.A.: Feature-preserving adaptive mesh generation for
molecular shape modeling and simulation. J. Mol. Graph. Model. 26, 1370–1380 (2008)

[86] Yu, Z., Holst, M., McCammon, J.A.: High-fidelity geometric modeling for biomedical applications.
Finite Elem. Anal. Des. 44(11), 715–723 (2008)

25


	Introduction
	The Poisson-Boltzmann Equation
	Adaptive Finite Element Methods
	Weak Forms
	Solving

	Error Indicators
	Energy Norm Indicators
	Goal-Oriented Indicators
	Goal-Oriented Error Indicators for the Linear RPBE


	Multilevel Preconditioning
	Local multigrid preconditioners

	Numerical Experiments
	Adaptive Refinement
	Global Marking Strategy
	Split Marking Strategy

	Performance of Preconditioners

	Conclusion
	Acknowledgments

